3.3.2 \(\int \frac {\coth ^3(x)}{\sqrt {a+b \text {sech}^2(x)}} \, dx\) [202]

Optimal. Leaf size=90 \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \text {sech}^2(x)}}{\sqrt {a}}\right )}{\sqrt {a}}-\frac {(2 a+3 b) \tanh ^{-1}\left (\frac {\sqrt {a+b \text {sech}^2(x)}}{\sqrt {a+b}}\right )}{2 (a+b)^{3/2}}-\frac {\coth ^2(x) \sqrt {a+b \text {sech}^2(x)}}{2 (a+b)} \]

[Out]

-1/2*(2*a+3*b)*arctanh((a+b*sech(x)^2)^(1/2)/(a+b)^(1/2))/(a+b)^(3/2)+arctanh((a+b*sech(x)^2)^(1/2)/a^(1/2))/a
^(1/2)-1/2*coth(x)^2*(a+b*sech(x)^2)^(1/2)/(a+b)

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 90, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.353, Rules used = {4224, 457, 105, 162, 65, 214} \begin {gather*} -\frac {\coth ^2(x) \sqrt {a+b \text {sech}^2(x)}}{2 (a+b)}+\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \text {sech}^2(x)}}{\sqrt {a}}\right )}{\sqrt {a}}-\frac {(2 a+3 b) \tanh ^{-1}\left (\frac {\sqrt {a+b \text {sech}^2(x)}}{\sqrt {a+b}}\right )}{2 (a+b)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Coth[x]^3/Sqrt[a + b*Sech[x]^2],x]

[Out]

ArcTanh[Sqrt[a + b*Sech[x]^2]/Sqrt[a]]/Sqrt[a] - ((2*a + 3*b)*ArcTanh[Sqrt[a + b*Sech[x]^2]/Sqrt[a + b]])/(2*(
a + b)^(3/2)) - (Coth[x]^2*Sqrt[a + b*Sech[x]^2])/(2*(a + b))

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 105

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(a +
b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Dist[1/((m + 1)*(b*
c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) +
 c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && ILtQ[m, -1] &
& (IntegerQ[n] || IntegersQ[2*n, 2*p] || ILtQ[m + n + p + 3, 0])

Rule 162

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 4224

Int[((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With
[{ff = FreeFactors[Sec[e + f*x], x]}, Dist[1/f, Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*((a + b*(c*ff*x)^n)^p/x)
, x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[(m - 1)/2] && (GtQ[m, 0] || EqQ[
n, 2] || EqQ[n, 4] || IGtQ[p, 0] || IntegersQ[2*n, p])

Rubi steps

\begin {align*} \int \frac {\coth ^3(x)}{\sqrt {a+b \text {sech}^2(x)}} \, dx &=-\text {Subst}\left (\int \frac {1}{x \left (-1+x^2\right )^2 \sqrt {a+b x^2}} \, dx,x,\text {sech}(x)\right )\\ &=-\left (\frac {1}{2} \text {Subst}\left (\int \frac {1}{(-1+x)^2 x \sqrt {a+b x}} \, dx,x,\text {sech}^2(x)\right )\right )\\ &=-\frac {\coth ^2(x) \sqrt {a+b \text {sech}^2(x)}}{2 (a+b)}+\frac {\text {Subst}\left (\int \frac {a+b+\frac {b x}{2}}{(-1+x) x \sqrt {a+b x}} \, dx,x,\text {sech}^2(x)\right )}{2 (a+b)}\\ &=-\frac {\coth ^2(x) \sqrt {a+b \text {sech}^2(x)}}{2 (a+b)}-\frac {1}{2} \text {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,\text {sech}^2(x)\right )+\frac {(2 a+3 b) \text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a+b x}} \, dx,x,\text {sech}^2(x)\right )}{4 (a+b)}\\ &=-\frac {\coth ^2(x) \sqrt {a+b \text {sech}^2(x)}}{2 (a+b)}-\frac {\text {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \text {sech}^2(x)}\right )}{b}+\frac {(2 a+3 b) \text {Subst}\left (\int \frac {1}{-1-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \text {sech}^2(x)}\right )}{2 b (a+b)}\\ &=\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \text {sech}^2(x)}}{\sqrt {a}}\right )}{\sqrt {a}}-\frac {(2 a+3 b) \tanh ^{-1}\left (\frac {\sqrt {a+b \text {sech}^2(x)}}{\sqrt {a+b}}\right )}{2 (a+b)^{3/2}}-\frac {\coth ^2(x) \sqrt {a+b \text {sech}^2(x)}}{2 (a+b)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.51, size = 159, normalized size = 1.77 \begin {gather*} \frac {-\left ((a+2 b+a \cosh (2 x)) \text {csch}^2(x)\right )+\frac {\sqrt {2} \sqrt {a+2 b+a \cosh (2 x)} \left (-\sqrt {a} (2 a+3 b) \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {a+b} \cosh (x)}{\sqrt {a+2 b+a \cosh (2 x)}}\right )+2 (a+b)^{3/2} \log \left (\sqrt {2} \sqrt {a} \cosh (x)+\sqrt {a+2 b+a \cosh (2 x)}\right )\right ) \text {sech}(x)}{\sqrt {a} \sqrt {a+b}}}{4 (a+b) \sqrt {a+b \text {sech}^2(x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Coth[x]^3/Sqrt[a + b*Sech[x]^2],x]

[Out]

(-((a + 2*b + a*Cosh[2*x])*Csch[x]^2) + (Sqrt[2]*Sqrt[a + 2*b + a*Cosh[2*x]]*(-(Sqrt[a]*(2*a + 3*b)*ArcTanh[(S
qrt[2]*Sqrt[a + b]*Cosh[x])/Sqrt[a + 2*b + a*Cosh[2*x]]]) + 2*(a + b)^(3/2)*Log[Sqrt[2]*Sqrt[a]*Cosh[x] + Sqrt
[a + 2*b + a*Cosh[2*x]]])*Sech[x])/(Sqrt[a]*Sqrt[a + b]))/(4*(a + b)*Sqrt[a + b*Sech[x]^2])

________________________________________________________________________________________

Maple [F]
time = 1.83, size = 0, normalized size = 0.00 \[\int \frac {\coth ^{3}\left (x \right )}{\sqrt {a +b \mathrm {sech}\left (x \right )^{2}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(x)^3/(a+b*sech(x)^2)^(1/2),x)

[Out]

int(coth(x)^3/(a+b*sech(x)^2)^(1/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)^3/(a+b*sech(x)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(coth(x)^3/sqrt(b*sech(x)^2 + a), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 1213 vs. \(2 (72) = 144\).
time = 0.62, size = 6475, normalized size = 71.94 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)^3/(a+b*sech(x)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(((a^2 + 2*a*b + b^2)*cosh(x)^4 + 4*(a^2 + 2*a*b + b^2)*cosh(x)*sinh(x)^3 + (a^2 + 2*a*b + b^2)*sinh(x)^4
 - 2*(a^2 + 2*a*b + b^2)*cosh(x)^2 + 2*(3*(a^2 + 2*a*b + b^2)*cosh(x)^2 - a^2 - 2*a*b - b^2)*sinh(x)^2 + a^2 +
 2*a*b + b^2 + 4*((a^2 + 2*a*b + b^2)*cosh(x)^3 - (a^2 + 2*a*b + b^2)*cosh(x))*sinh(x))*sqrt(a)*log(((a^3 + 2*
a^2*b + a*b^2)*cosh(x)^8 + 8*(a^3 + 2*a^2*b + a*b^2)*cosh(x)*sinh(x)^7 + (a^3 + 2*a^2*b + a*b^2)*sinh(x)^8 + 2
*(2*a^3 + 5*a^2*b + 4*a*b^2 + b^3)*cosh(x)^6 + 2*(2*a^3 + 5*a^2*b + 4*a*b^2 + b^3 + 14*(a^3 + 2*a^2*b + a*b^2)
*cosh(x)^2)*sinh(x)^6 + 4*(14*(a^3 + 2*a^2*b + a*b^2)*cosh(x)^3 + 3*(2*a^3 + 5*a^2*b + 4*a*b^2 + b^3)*cosh(x))
*sinh(x)^5 + (6*a^3 + 14*a^2*b + 9*a*b^2)*cosh(x)^4 + (70*(a^3 + 2*a^2*b + a*b^2)*cosh(x)^4 + 6*a^3 + 14*a^2*b
 + 9*a*b^2 + 30*(2*a^3 + 5*a^2*b + 4*a*b^2 + b^3)*cosh(x)^2)*sinh(x)^4 + 4*(14*(a^3 + 2*a^2*b + a*b^2)*cosh(x)
^5 + 10*(2*a^3 + 5*a^2*b + 4*a*b^2 + b^3)*cosh(x)^3 + (6*a^3 + 14*a^2*b + 9*a*b^2)*cosh(x))*sinh(x)^3 + a^3 +
2*(2*a^3 + 3*a^2*b)*cosh(x)^2 + 2*(14*(a^3 + 2*a^2*b + a*b^2)*cosh(x)^6 + 15*(2*a^3 + 5*a^2*b + 4*a*b^2 + b^3)
*cosh(x)^4 + 2*a^3 + 3*a^2*b + 3*(6*a^3 + 14*a^2*b + 9*a*b^2)*cosh(x)^2)*sinh(x)^2 + sqrt(2)*((a^2 + 2*a*b + b
^2)*cosh(x)^6 + 6*(a^2 + 2*a*b + b^2)*cosh(x)*sinh(x)^5 + (a^2 + 2*a*b + b^2)*sinh(x)^6 + 3*(a^2 + 2*a*b + b^2
)*cosh(x)^4 + 3*(5*(a^2 + 2*a*b + b^2)*cosh(x)^2 + a^2 + 2*a*b + b^2)*sinh(x)^4 + 4*(5*(a^2 + 2*a*b + b^2)*cos
h(x)^3 + 3*(a^2 + 2*a*b + b^2)*cosh(x))*sinh(x)^3 + (3*a^2 + 4*a*b)*cosh(x)^2 + (15*(a^2 + 2*a*b + b^2)*cosh(x
)^4 + 18*(a^2 + 2*a*b + b^2)*cosh(x)^2 + 3*a^2 + 4*a*b)*sinh(x)^2 + a^2 + 2*(3*(a^2 + 2*a*b + b^2)*cosh(x)^5 +
 6*(a^2 + 2*a*b + b^2)*cosh(x)^3 + (3*a^2 + 4*a*b)*cosh(x))*sinh(x))*sqrt(a)*sqrt((a*cosh(x)^2 + a*sinh(x)^2 +
 a + 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*(2*(a^3 + 2*a^2*b + a*b^2)*cosh(x)^7 + 3*(2*a^3 + 5
*a^2*b + 4*a*b^2 + b^3)*cosh(x)^5 + (6*a^3 + 14*a^2*b + 9*a*b^2)*cosh(x)^3 + (2*a^3 + 3*a^2*b)*cosh(x))*sinh(x
))/(cosh(x)^6 + 6*cosh(x)^5*sinh(x) + 15*cosh(x)^4*sinh(x)^2 + 20*cosh(x)^3*sinh(x)^3 + 15*cosh(x)^2*sinh(x)^4
 + 6*cosh(x)*sinh(x)^5 + sinh(x)^6)) + ((2*a^2 + 3*a*b)*cosh(x)^4 + 4*(2*a^2 + 3*a*b)*cosh(x)*sinh(x)^3 + (2*a
^2 + 3*a*b)*sinh(x)^4 - 2*(2*a^2 + 3*a*b)*cosh(x)^2 + 2*(3*(2*a^2 + 3*a*b)*cosh(x)^2 - 2*a^2 - 3*a*b)*sinh(x)^
2 + 2*a^2 + 3*a*b + 4*((2*a^2 + 3*a*b)*cosh(x)^3 - (2*a^2 + 3*a*b)*cosh(x))*sinh(x))*sqrt(a + b)*log(((2*a + b
)*cosh(x)^4 + 4*(2*a + b)*cosh(x)*sinh(x)^3 + (2*a + b)*sinh(x)^4 + 2*(2*a + 3*b)*cosh(x)^2 + 2*(3*(2*a + b)*c
osh(x)^2 + 2*a + 3*b)*sinh(x)^2 - 2*sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 + 1)*sqrt(a + b)*sqrt((
a*cosh(x)^2 + a*sinh(x)^2 + a + 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*((2*a + b)*cosh(x)^3 + (
2*a + 3*b)*cosh(x))*sinh(x) + 2*a + b)/(cosh(x)^4 + 4*cosh(x)*sinh(x)^3 + sinh(x)^4 + 2*(3*cosh(x)^2 - 1)*sinh
(x)^2 - 2*cosh(x)^2 + 4*(cosh(x)^3 - cosh(x))*sinh(x) + 1)) + ((a^2 + 2*a*b + b^2)*cosh(x)^4 + 4*(a^2 + 2*a*b
+ b^2)*cosh(x)*sinh(x)^3 + (a^2 + 2*a*b + b^2)*sinh(x)^4 - 2*(a^2 + 2*a*b + b^2)*cosh(x)^2 + 2*(3*(a^2 + 2*a*b
 + b^2)*cosh(x)^2 - a^2 - 2*a*b - b^2)*sinh(x)^2 + a^2 + 2*a*b + b^2 + 4*((a^2 + 2*a*b + b^2)*cosh(x)^3 - (a^2
 + 2*a*b + b^2)*cosh(x))*sinh(x))*sqrt(a)*log(-(a*cosh(x)^4 + 4*a*cosh(x)*sinh(x)^3 + a*sinh(x)^4 + 2*b*cosh(x
)^2 + 2*(3*a*cosh(x)^2 + b)*sinh(x)^2 + sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 - 1)*sqrt(a)*sqrt((
a*cosh(x)^2 + a*sinh(x)^2 + a + 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*(a*cosh(x)^3 + b*cosh(x)
)*sinh(x) + a)/(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2)) - 2*sqrt(2)*((a^2 + a*b)*cosh(x)^2 + 2*(a^2 + a*b)
*cosh(x)*sinh(x) + (a^2 + a*b)*sinh(x)^2 + a^2 + a*b)*sqrt((a*cosh(x)^2 + a*sinh(x)^2 + a + 2*b)/(cosh(x)^2 -
2*cosh(x)*sinh(x) + sinh(x)^2)))/((a^3 + 2*a^2*b + a*b^2)*cosh(x)^4 + 4*(a^3 + 2*a^2*b + a*b^2)*cosh(x)*sinh(x
)^3 + (a^3 + 2*a^2*b + a*b^2)*sinh(x)^4 + a^3 + 2*a^2*b + a*b^2 - 2*(a^3 + 2*a^2*b + a*b^2)*cosh(x)^2 - 2*(a^3
 + 2*a^2*b + a*b^2 - 3*(a^3 + 2*a^2*b + a*b^2)*cosh(x)^2)*sinh(x)^2 + 4*((a^3 + 2*a^2*b + a*b^2)*cosh(x)^3 - (
a^3 + 2*a^2*b + a*b^2)*cosh(x))*sinh(x)), 1/4*(2*((2*a^2 + 3*a*b)*cosh(x)^4 + 4*(2*a^2 + 3*a*b)*cosh(x)*sinh(x
)^3 + (2*a^2 + 3*a*b)*sinh(x)^4 - 2*(2*a^2 + 3*a*b)*cosh(x)^2 + 2*(3*(2*a^2 + 3*a*b)*cosh(x)^2 - 2*a^2 - 3*a*b
)*sinh(x)^2 + 2*a^2 + 3*a*b + 4*((2*a^2 + 3*a*b)*cosh(x)^3 - (2*a^2 + 3*a*b)*cosh(x))*sinh(x))*sqrt(-a - b)*ar
ctan(sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 + 1)*sqrt(-a - b)*sqrt((a*cosh(x)^2 + a*sinh(x)^2 + a
+ 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/(a*cosh(x)^4 + 4*a*cosh(x)*sinh(x)^3 + a*sinh(x)^4 + 2*(a
+ 2*b)*cosh(x)^2 + 2*(3*a*cosh(x)^2 + a + 2*b)*sinh(x)^2 + 4*(a*cosh(x)^3 + (a + 2*b)*cosh(x))*sinh(x) + a)) +
 ((a^2 + 2*a*b + b^2)*cosh(x)^4 + 4*(a^2 + 2*a*b + b^2)*cosh(x)*sinh(x)^3 + (a^2 + 2*a*b + b^2)*sinh(x)^4 - 2*
(a^2 + 2*a*b + b^2)*cosh(x)^2 + 2*(3*(a^2 + 2*a*b + b^2)*cosh(x)^2 - a^2 - 2*a*b - b^2)*sinh(x)^2 + a^2 + 2*a*
b + b^2 + 4*((a^2 + 2*a*b + b^2)*cosh(x)^3 - (a...

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\coth ^{3}{\left (x \right )}}{\sqrt {a + b \operatorname {sech}^{2}{\left (x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)**3/(a+b*sech(x)**2)**(1/2),x)

[Out]

Integral(coth(x)**3/sqrt(a + b*sech(x)**2), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)^3/(a+b*sech(x)^2)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Error: Bad Argument Type

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\mathrm {coth}\left (x\right )}^3}{\sqrt {a+\frac {b}{{\mathrm {cosh}\left (x\right )}^2}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(x)^3/(a + b/cosh(x)^2)^(1/2),x)

[Out]

int(coth(x)^3/(a + b/cosh(x)^2)^(1/2), x)

________________________________________________________________________________________